ตรรกศาสตร์ คืออะไร
ตรรกศาสตร์ คือ วิชาที่ว่าด้วยกฎเกณฑ์และเหตุผล การได้มาของผลภายใต้กฎเกณฑ์ที่กำหนดถือเป็นสาระสำคัญ ข้อความหรือการให้เหตุผลในชีวิตประจำวันสามารถสร้างเป็นรูปแบบที่ชัดเจนจน ใช้ประโยชน์ในการสรุปความ ความสมเหตุสมผลเป็นที่ยอมรับกันอย่างกว้างขวาง ตรรกศาสตร์เป็นแม่บทของคณิตศาสตร์แขนงต่าง ๆ และการประยุกต์
ประพจน์ คืออะไร
ประพจน์ คือ ประโยคที่มีค่าความจริง เป็นจริงหรือเท็จ อย่างใดอย่างหนึ่ง โดย
- ประโยคที่เป็นประพจน์ จะมีลักษณะเป็นประโยคบอกเล่าหรือปฏิเสธ
- ประโยคที่ไม่เป็นประพจน์ จะมีลักษณะเป็นประโยคคำถาม คำสัง ขอร้อง และประโยคอุทาน
- ประโยคที่มีค่าความจริงไม่แน่นอน หรือไม่อาจระบุได้ว่ามีค่าความจริงว่าเป็นจริงหรือเท็จได้ จะไม่เป็นประพจน์
ตัวเชื่อมประพจน์
ถ้าให้ p และ q เป็นประพจน์ เมื่อนำประพจน์มาเชื่อมกันด้วยตัวเชื่อมแล้ว เราเรัยกประพจน์ใหม่ว่า ประพจน์เชิงประกอบ ซึ่งตัวเชื่อมที่ใช้จะมี 5 ตัว คือ
- “และ” ใช้สัญลักษณ์ ∧
- “หรือ” ใช้สัญลักษณ์ ∨
- “ถ้า…แล้ว…” ใช้สัญลักษณ์ →
- “ก็ต่อเมื่อ” ใช้สัญลักษณ์ ↔
- “นิเสธ” ใช้สัญลักษณ์ ~
ตารางค่าความจริงของตัวเชื่อม
p | q | p∧q | p∨q | p→q | p↔q |
T | T | T | T | T | T |
T | F | F | T | F | F |
F | T | F | T | T | F |
F | F | F | F | T | T |
เป็นจริง ใช้สัญลักษณ์ T
เป็นเท็จ ใช้สัญลักษณ์ F
ประพจน์ที่สมมูลกัน (Equivalent) คือ รูปแบบของประพจน์สองรูปแบบที่มีค่าความจริงเหมือนกันทุกกรณี เขียนแทนด้วยสัญลักษณ์ ≡
คุณสมบัติของการสมมูลของรูปแบบประพจน์
กำหนดให้ A, B และ C เป็นรูปแบบของประพจน์
- การสะท้อน: A ≡ A
- การสมมาตร: ถ้า A ≡ B แล้ว B ≡ A
- การถ่ายทอด: ถ้า A ≡ B แล้ว B ≡ C แล้ว A ≡ C
ตัวอย่างประพจน์ที่สมมูลกันที่ควรรู้
- p ∧ q สมมูลกับ q ∧ p
- p ∨ q สมมูลกับ q ∨ p
- (p ∧ q) ∧ r สมมูลกับ p ∧ (q ∧ r)
- (p ∨ q) ∨ r สมมูลกับ p ∨ (q ∨ r)
- p ∧ (q ∨ r) สมมูลกับ (p ∧ q) ∨ (p ∧ r)
- p ∨ (q ∧ r) สมมูลกับ (p ∨ q) ∧ (p ∨ r)
- p → q สมมูลกับ ~p ∨ q
- p → q สมมูลกับ ~q → ~p
- p ⇔ q สมมูลกับ (p → q) ∧ (q → p)
ประพจน์ที่เป็นนิเสธกัน คือ ประพจน์ที่มีค่าความจริงตรงกันข้ามทุกกรณี ใช้สัญลักษณ์ ~ แทนนิเสธ
จากนิยาม รูปแบบประพจน์ A เป็นนิเสธของ รูปแบบประพจน์ B ก็ต่อเมื่อ
- ค่าความจริงของ A และ B ต่างกันทุกกรณี
- ค่าความจริงของ A และ ~B เหมือนกันทุกกรณี
- A ≡ ~B
- ดังนั้น A เป็นนิเสธของ B ก็ต่อเมื่อ A สมมูลกับ ~B
ตัวอย่างประพจน์ที่เป็นนิเสธกันที่ควรรู้
- ~(p ∧ q) สมมูลกับ ~p ∨ ~q
- ~(p ∨ q) สมมูลกับ ~p ∧ ~q
- ~(p → q) สมมูลกับ p ∧ ~q
- ~(p ⇔ q) สมมูลกับ (p ⇔ ~q) ∨(q ⇔ ~p)
- ~(p ⇔ q) สมมูลกับ (p ∧ ~q) ∨ (q ∧~p)
สัจนิรันดร์ (Tautology) คือ รูปแบบของประพจน์ที่มีค่าความจริงเป็นจริงทุกกรณี
ประโยคเปิด (Open Sentence) คือ ข้อความที่อยู่ในรูปประโยคบอกเล่าหรือปฏิเสธ ที่มีตัวแปรและสื่อแทนค่าของตัวแปรนั้น จะได้ค่าความจริงแน่นอน หรือเป็นประพจน์ นิยมใช้สัญลักษณ์ P(x), P(x , y), Q(x , y) แทนประโยคเปิดที่มีตัวแปรระบุในวงเล็บ
ตัวบ่งปริมาณ (∀,∃)
คือ ตัวระบุจำนวนสมาชิกในเอกภพสัมพัทธ์ที่ทำให้ประโยคเปิดกลายเป็นประพจน์ ตัวบ่งปริมาณมี 2 ชนิด คือ
- ตัวบ่งปริมาณที่กล่าวถึงสมาชิกทุกตัวในเอกภพสัมพัทธ์ ซึ่งเขียนแทนได้ด้วยสัญลักษณ์ ∀ อ่านว่า “สำหรับสมาชิก x ทุกตัว”
- ตัวบ่งปริมาณที่กล่าวถึงสมาชิกบางตัวในเอกภพสัมพัทธ์ ซึ่งเขียนแทนได้ด้วยสัญลักษณ์ ∃ อ่านว่า “สำหรับสมาชิก x บางตัว”
ค่าความจริงของประพจน์ที่มีตัวบ่งปริมาณ
- ∀x[P(x)] มีค่าความจริงเป็นจริง เมื่อ x ทุกตัวในเอกภพสัมพัทธ์ทำให้ P(x) เป็นจริง
- ∀x[P(x)] มีค่าความจริงเป็นเท็จ เมื่อมี x อย่างน้อย 1 ตัวที่ทำให้ P(x) เป็นเท็จ
- ∃x[P(x)] มีค่าความจริงเป็นจริง เมื่อมี x อย่าน้อย 1 ตัวที่ทำให้ P(x) เป็นจริง
- ∃x[P(x)] มีค่าความจริงเป็นเท็จ เมื่อไม่มี x ใดๆ ในเอกภพสัมพัทธ์ที่ทำให้ P(x) เป็นจริง
นิเสธของประพจน์ที่มีตัวบ่งปริมาณ
- ~∀x[P(x)] สมมูลกับ ∃x[~P(x)]
- ~∃x[P(x)] สมมูลกับ∀x[~P(x)]
- ~∀x[~P(x)] สมมูลกับ∃x[P(x)]
- ~∃x[~P(x)] สมมูลกับ∀x[P(x)]
การอ้างเหตุผล
คือ การอ้างว่า สำหรับเหตุการณ์ P1, P2,…, Pn ชุดหนึ่ง สามารถสรุปผลที่ตามมา C ได้ โดยการอ้างเหตุผลประกอบด้วย 2 ส่วน คือ เหตุ (สิ่งที่กำหนดให้) และ ผล (สิ่งที่ตามมา)
สำหรับการพิจารณาว่า การอ้างเหตุผลนั้นสมเหตุสมผลหรือไม่ สามารถพิจารณาได้จากประพจน์ ( P1 ∧ P2 ∧ … Pn) → C ถ้าประพจน์ดังกล่าวมีค่าความจริงเป็นจริงเสมอ (เป็นสัจนิรันดร์) เราสามารถสรุปได้ว่าการอ้างเหตุผลดังกล่าวเป็นการอ้างที่สมเหตุสมผล
ตัวอย่างข้อสอบเรื่อง ตรรกศาสตร์